Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Année
Type de document
Gamme d'année
1.
Ann Rheum Dis ; 80(9): 1158-1167, 2021 09.
Article Dans Anglais | MEDLINE | ID: covidwho-1356912

Résumé

OBJECTIVES: Although causality remains to be established, targeting dysbiosis of the intestinal microbiota by faecal microbiota transplantation (FMT) has been proposed as a novel treatment for inflammatory diseases. In this exploratory, proof-of-concept study, we evaluated the safety and efficacy of FMT in psoriatic arthritis (PsA). METHODS: In this double-blind, parallel-group, placebo-controlled, superiority trial, we randomly allocated (1:1) adults with active peripheral PsA (≥3 swollen joints) despite ongoing treatment with methotrexate to one gastroscopic-guided FMT or sham transplantation into the duodenum. Safety was monitored throughout the trial. The primary efficacy endpoint was the proportion of participants experiencing treatment failure (ie, needing treatment intensification) through 26 weeks. Key secondary endpoints were change in Health Assessment Questionnaire Disability Index (HAQ-DI) and American College of Rheumatology (ACR20) response at week 26. RESULTS: Of 97 screened, 31 (32%) underwent randomisation (15 allocated to FMT) and 30 (97%) completed the 26-week clinical evaluation. No serious adverse events were observed. Treatment failure occurred more frequently in the FMT group than in the sham group (9 (60%) vs 3 (19%); risk ratio, 3.20; 95% CI 1.06 to 9.62; p=0.018). Improvement in HAQ-DI differed between groups (0.07 vs 0.30) by 0.23 points (95% CI 0.02 to 0.44; p=0.031) in favour of sham. There was no difference in the proportion of ACR20 responders between groups (7 of 15 (47%) vs 8 of 16 (50%)). CONCLUSIONS: In this first preliminary, interventional randomised controlled trial of FMT in immune-mediated arthritis, we did not observe any serious adverse events. Overall, FMT appeared to be inferior to sham in treating active peripheral PsA. TRIAL REGISTRATION NUMBER: NCT03058900.


Sujets)
Arthrite psoriasique/thérapie , Dysbiose/thérapie , Transplantation de microbiote fécal/méthodes , Adulte , Antirhumatismaux/usage thérapeutique , Arthrite psoriasique/microbiologie , Femelle , Humains , Mâle , Méthotrexate/usage thérapeutique , Adulte d'âge moyen , Étude de validation de principe , Résultat thérapeutique
2.
Cell Discov ; 7(1): 23, 2021 Apr 13.
Article Dans Anglais | MEDLINE | ID: covidwho-1182823

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus disease 2019 (COVID-19). However, the microbial composition of the respiratory tract and other infected tissues as well as their possible pathogenic contributions to varying degrees of disease severity in COVID-19 patients remain unclear. Between 27 January and 26 February 2020, serial clinical specimens (sputum, nasal and throat swab, anal swab and feces) were collected from a cohort of hospitalized COVID-19 patients, including 8 mildly and 15 severely ill patients in Guangdong province, China. Total RNA was extracted and ultra-deep metatranscriptomic sequencing was performed in combination with laboratory diagnostic assays. We identified distinct signatures of microbial dysbiosis among severely ill COVID-19 patients on broad spectrum antimicrobial therapy. Co-detection of other human respiratory viruses (including human alphaherpesvirus 1, rhinovirus B, and human orthopneumovirus) was demonstrated in 30.8% (4/13) of the severely ill patients, but not in any of the mildly affected patients. Notably, the predominant respiratory microbial taxa of severely ill patients were Burkholderia cepacia complex (BCC), Staphylococcus epidermidis, or Mycoplasma spp. (including M. hominis and M. orale). The presence of the former two bacterial taxa was also confirmed by clinical cultures of respiratory specimens (expectorated sputum or nasal secretions) in 23.1% (3/13) of the severe cases. Finally, a time-dependent, secondary infection of B. cenocepacia with expressions of multiple virulence genes was demonstrated in one severely ill patient, which might accelerate his disease deterioration and death occurring one month after ICU admission. Our findings point to SARS-CoV-2-related microbial dysbiosis and various antibiotic-resistant respiratory microbes/pathogens in hospitalized COVID-19 patients in relation to disease severity. Detection and tracking strategies are needed to prevent the spread of antimicrobial resistance, improve the treatment regimen and clinical outcomes of hospitalized, severely ill COVID-19 patients.

SÉLECTION CITATIONS
Détails de la recherche